

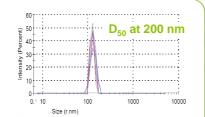
LiNi_{0.33}Mn_{0.33}Co_{0.33}O₂ (NMC) nanoparticles synthesis and implementation of the Li-ion battery electrode by using printing process

(David Peralta, Jean-François Colin, Frédéric Fabre, Benjamin Amestoy and Jérémie Salomon)

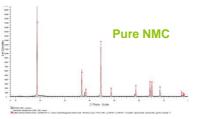
Objectives

- ✓ Synthesis of nanoparticles of lamellar active material NMC
- ✓ Improve the electrochemical performances of the Li-ion battery
- ✓ Promote low-cost, high-resolution and high-throughput deposition and patterning process for the battery electrode manufacturing

CONTACT:


SALOMON Jérémie ieremie.salomon@cea.fr **PERALTA David** david.peralta@cea.fr

Synthesis of the nano-sized NMC


Nanoparticles of NMC synthesized by co-precipitation reaction leading to pure nanomaterial with narrow particle size distribution

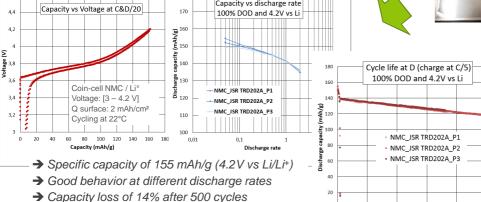
SEM picture of NMC nanoparticles

Particle size distribution of NMC nanoparticles measured by DSL

XRD spectrum of NMC nanoparticles

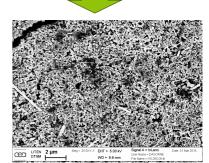
Electrode formulation and implementation

- ✓ Water-based slurry formulated from CMC binder and JSR TRD202A latex
- ✓ Electrode implemented by using screen-printing. process (lab-scale)



Screen-print onto Al foil

Screen print onto Varta current collector (hot embossed Cu and Al onto the battery pouch film)



Capacity vs discharge rate

Electrochemical performances of the water-based nano-NMC electrode

SEM picture of the NMC electrode

→ Homogeneous structure

Basmati
Development performed in the framework of BASMATI project
Partners involved in the project:

